A.原子的质量大部分集中在原子核上 |
B.原子的质量大部分集中在核外电子上 |
C.原子核的质量约等于核内中子和质子的质量和 |
D.原子核的质量和核外电子的质量差不多 |
E.相对于原子的尺寸,原子核所占的空间特别小(核半径约为原子的十万分之一) |
A.半衰期都一样长 |
B.放射性核素的原子数中的一半发生衰变的时间 |
C.放射性核素的原子数减少至原有值的一半所需的时间 |
D.半衰期有的长有的短 |
E.对某一核素来说是固定的 |
A.吸入 |
B.电磁波 |
C.表面污染 |
D.食入 |
E.饮水 |
A.内照射个人剂量可通过外照射剂量监测替代 |
B.内照射个人剂量较复杂,需要制订监测计划 |
C.内照射个人剂量较复杂,需要在专业人员指导下进行 |
D.内照射测量涉及生物样品的实验室分析 |
E.内照射个人剂量不需要通过仪器监测,由模式计算即可 |
A.气体呼出 |
B.汗液 |
C.尿液 |
D.粪 |
E.洗澡 |
A.内照射会造成 DNA 分子损伤而外照射不会 |
B.相对于外照射,内照射对人体的潜在危害更大 |
C.内照射危害方式主要是电离、化学毒性危害 |
D.α 粒子无内照射危害 |
E.内照射除了放射性衰变、呼吸、出汗等方式外,无法通过一般的控制方法减弱 |
A.价格便宜 |
B.富含氢 |
C.氢俘获热中子后放出的 γ 射线能量低 |
D.水具有流动性 |
E.水的导热性好 |
A.检验监测对象是否和国家、地方、行业或审管部门的有关规定相符合 |
B.监视设施运行状态 |
C.及时发现环境中放射性水平的变化趋势和异常情况 |
D.在事故工况下,为事故应急工作提供决策依据 |
E.监测结果既是环境影响评价的基础,也可以用于验证评价模式 |
A.本底调查 |
B.竣工验收监测 |
C.常规监测 |
D.退役终态监测 |
E.应急监测 |
A.执业单位应安排专人管理个人剂量监测工作 |
B.操作非密封放射性物质的工作人员,应注意避免剂量计受到污染 |
C.有监测能力的单位可以自行监测;不具备自行监测能力的单位,可以委托有相应资质的机构监测 |
D.发现个人剂量监测结果异常的,仅告知个人剂量计使用人以后个人剂量不要超标即可 |
E.辐射工作单位应将个人剂量档案保存至辐射工作人员离职 |
A.保护环境 |
B.消除全部辐射 |
C.保障公众的健康与安全和保护他们的后代 |
D.促进核武器事业的发展 |
E.保障从事放射性工作的人员的健康与安全和保护他们的后代 |
A.尽量减少或避免射线从外部对人体的照射 |
B.使外照射不超过国家规定的剂量限制 |
C.外照射防护的三要素:时间、距离、屏蔽 |
D.对于伽马射线的防护,采用原子序数低的材料制成的屏蔽物更好 |
E.对于中子的防护,常常分为慢化和吸收两步 |
A.污染空气 |
B.污水 |
C.空气 |
D.水 |
E.上述所有 |
A.主要针对大剂量、大剂量率的急性照射 |
B.损伤的严重性随着照射剂量的增加而增加 |
C.存在剂量阈值 |
D.癌症的发生属于确定性效应 |
E.遗传效应发生属于确定性效应 |
A.中子 |
B.电子 |
C.质子 |
D.γ 射线 |
E.其它原子核 |
A.原子核能级跃迁退激时会放出 γ 射线 |
B.是波长较短的电磁波 |
C.没有静止质量 |
D.带电 |
E.不带电 |
A.放射性核素衰变遵从统计规律 |
B.某个原子核衰变的精确时间 |
C.原子核的固有特性 |
D.是人为可以改变的 |
E.不受化学或物理变化的影响 |
A.为估算工作人员受照剂量提供资料 |
B.事故照射情况下,为受照人员健康监护提供资料 |
C.事故照射情况下,为受照人员治疗提供资料 |
D.为验证工作人员吸入的放射性物质的是否符合管理要求 |
E.为完善防护设计提供资料 |
A.吸入 |
B.食入 |
C.通过皮肤渗入 |
D.通过电磁感应 |
E.通过伤口侵入 |
A.在有效检定期限内 |
B.按照操作规程使用、操作 |
C.检查仪器的工作状态 |
D.需要向行政管理部门报批 |
E.不需要校准 |
A.可靠性好 |
B.满足监管要求的远程联 |
C.响应时间快 |
D.超阈值报警 |
E.与防护门联锁 |
A.正当性是前提,最优化是目标,剂量限值和约束是限制条件 |
B.任何改变照射情况的决定都应当是利大于弊 |
C.任何一项实践,对于不具有正当性的实践以及该实践中的源,不应予于批准 |
D.正当性是使得对受照个人或社会带来的利益足以弥补其可能引起的辐射危害 |
E.正当性是指必须保证任何个人不受到大于天然本底的照射 |
A.人员 |
B.距离 |
C.时间 |
D.屏蔽 |
E.场所 |
A.实验操作流程 |
B.正常工作条件下的正常照射 |
C.防止污染扩散 |
D.预防潜在照射 |
E.限制潜在照射的范围 |
A.发生概率与剂量大小相关 |
B.严重程度与剂量大小相关 |
C.主要针对小剂量、小剂量率的慢性照射 |
D.存在剂量阈值 |
E.致癌效应和遗传效应属于随机性效应 |
A.每一种元素占据元素周期表的一个格子 |
B.元素周期表是按原子核内的中子数排列 |
C.元素周期表是按原子核内的质子数排列的 |
D.元素周期表是门捷列夫发明的 |
E.元素周期表是按核内中子数和质子数之和排列的 |
A.α 粒子可以被纸张挡住 |
B.β 粒子可以选择来铝板屏蔽 |
C.γ 要用高原子序数的物质,如铅板屏蔽 |
D.中子要先用含 H 材料慢化再进行吸收 |
E.β 粒子常常采用低 Z 材料+高Z 材料组合的形式屏蔽 |
A.核裂变会放出中子 |
B.核聚变会放出中子 |
C.由不稳定原子核发射出的 |
D.中子不带电 |
E.中子围绕原子核运动 |
A.辐射事故就是核事故 |
B.放射性物质丢失、被盗、失控 |
C.放射性物质失控造成人员受到意外的异常照射 |
D.射线装置失控造成人员受到意外的异常照射 |
E.环境放射性污染的事件 |
A.估算组织或器官当量剂量或全身有效剂量 |
B.证明工作人员受照剂量是否符合标准和审管部门的要求 |
C.了解工作场所防护有效性 |
D.为事故人员受照剂量调查和医学响应提供资料 |
E.为工作场所防护条件的改进提供依据 |
A.个人剂量计 |
B.便携式周围剂量当量率 |
C.便携式空气比释动能率仪 |
D.便携式空气吸收剂量率仪 |
E.活度计 |
A.连续 5 年的年平均有效剂量为 6mSv |
B.连续 5 年的年平均有效剂量为 20mSv |
C.任何一年中的有效剂量最大值为 50mSv |
D.眼晶体的年当量剂量为 150mSv |
E.四肢(手和足)或皮肤的年当量剂量为 500mSv |
A.监督 |
B.专门防护 |
C.评价 |
D.控制 |
E.设置 |
A.宇宙射线 |
B.宇生放射性核素 |
C.原生放射性核素 |
D.辐射育种 |
E.核电站运行 |
A.石油、煤炭等资源勘探及矿物成分分析 |
B.辐照食品 |
C.工业探伤 |
D.核医学、放射诊断和治疗 |
E.农作物抗病、耐旱 |
A.韧致辐射是一种 α 粒子 |
B.韧致辐射是一种 β 粒子 |
C.韧致辐射发出的是中子 |
D.韧致辐射是一种 X 射线 |
E.韧致辐射的能谱是个连续谱 |
A.紫外线 |
B.热辐射 |
C.可见光 |
D.无线电波 |
E.微波 |
A.原子核衰变时可以产生放射性 |
B.放射性核素肯定是不稳定核素 |
C.放射性核素必然会放出中子 |
D.放射性核素必然会放出特定的射线 |
E.放射性核素永远是稳定的 |
A.衰变常数λ 越大,放射性原子核衰变的越快 |
B.半衰期 T1/2 越大,放射性原子核衰变的越慢 |
C.衰变常数λ 是每个放射性核素特有的性质,是常数 |
D.半衰期 T1/2 是每个放射性核素特有的性质,是常数 |
E.衰变常数越小,半衰期越大 |
A.吸入 |
B.食入 |
C.伤口 |
D.电磁感应 |
E.通过皮肤渗透 |
A.极毒组 |
B.高毒组 |
C.中毒组 |
D.低毒组 |
E.无毒组 |
A.核磁共振 |
B.各类核子秤 |
C.工业辐照 |
D.工业射线探伤 |
E.放射性测井 |
A.年有效剂量,6mSv |
B.年有效剂量,1mSv |
C.眼晶体的年当量剂量,150mSv |
D.眼晶体的年当量剂量,50mSv |
E.四肢(手和足)或皮肤的年当量剂量,150mSv |
A.防护服 |
B.手套 |
C.鞋罩 |
D.防护眼镜 |
E.专用的呼吸保护器、气衣 |
A.电离室 |
B.碘化钠 |
C.个人剂量计 |
D.高纯锗 |
E.伽玛相机 |
A.辐照装置 |
B.一般的校验源 |
C.固定多束远距放射治疗仪(伽玛刀) |
D.工业伽玛照相机 |
E.高中剂量率近距放射治疗仪 |
A.陆地 γ 辐射 |
B.环境介质中放射性核素的浓度或含量 |
C.环境生物体中放射性核素的浓度或含量 |
D.放射源活度监测 |
E.工作人员个人剂量 |
A.通知公众源已找到 |
B.确保识别出所有可能已受到照射的人 |
C.需要的话,对医院提供必要的支持 |
D.如有必要,启动去污程序和医疗跟踪 |
E.开展航空监测 |
A.确定工作人员可能吸入放射性物质的上限(摄入量上限),以估计安全程度 |
B.及时发现异常或事故情况下的污染,以便及早报警,并对异常或事故进行分析,采取相应的对策 |
C.为制定内照射个人监测计划提供必要的参考资料,提出特殊的个人内照射监测要求 |
D.考核工艺设计、工艺设备的性能或操作程序是否达到防护设计的要求 |
E.为规避责任 |
A.放出电子 |
B.放出 α 粒子 |
C.放出氦原子核 |
D.放出 β 粒 |
E.放出中子(n) |
A.凝聚沉淀 |
B.蒸发、离子交换 |
C.去污 |
D.吸附、过滤、除尘 |
E.贮存衰变 |
A.操作量多少 |
B.毒性大小 |
C.种类多少 |
D.操作方式 |
E.重量大小 |
A.工作台、设备 |
B.墙壁、地面 |
C.工作服、手套、工作 |
D.手、皮肤、内衣、工作袜 |
E.人体内部 |
A.两个轻的原子核结合成较重的原子核,可以释放出聚变能 |
B.较重的原子核分裂成两个中等重的原子核,释放出裂变能 |
C.原子能是指原子裂变或聚变时所释放的能量 |
D.原子能的能量非常巨大,远超一般的化学能 |
E.能量和质量可以相互转换 |
A.贮存场所温度、湿度 |
B.供电电源是否失效、欠压;充电电源是否过压 |
C.仪器贮存和运输应有专用包箱 |
D.固定在工作场所的监测仪器应经常清洁、维护 |
E.某些仪器长时间受强辐射场的照射,材料受损对测量结果有影响 |
A.检验流出物排放是否符合相关标准或审管部门的有关规定 |
B.监视设施运行状态,对异常或事故给出警示 |
C.检验流出物处理设施的处理效果 |
D.在事故工况下,为事故应急工作提供决策依据 |
E.为环境影响评价提供源项资料 |
A.辐射源的类型 |
B.辐射与屏蔽材料作用时,是否有次级辐射产生 |
C.辐射与材料作用时,是否产生有害气体 |
D.屏蔽材料的稳定性 |
E.放射源的活度 |
A.吸烟 |
B.饮水 |
C.进食 |
D.随意乱坐 |
E.随意乱摸 |
A.甲级非密封源工作场所日等效最大操作量为 2×10^7 |
B.甲级非密封源工作场所日等效最大操作量为>4×10^9Bq |
C.丙级非密封源工作场所日等效最大操作量为豁免活度值以上 |
D.甲级非密封源工作场所日等效最大操作量为>2×10^7Bq |
E.乙级非密封源工作场所日等效最大操作量为 2×10^7 |
A.工作服 |
B.鞋、帽 |
C.口罩、手套 |
D.围裙 |
E.气衣 |
A.价格便宜 |
B.富含氢 |
C.氢俘获热中子后放出的 γ 射线能量低 |
D.水具有流动性 |
E.水的导热性好 |
A.环境监测的对象是陆地 γ 辐射及环境介质和生物体中放射性核素的浓度或含量 |
B.应监测的环境介质包括空气、水、各类水体底泥、土壤 |
C.应监测的生物体包括陆生生物和水生生物 |
D.重点应考虑本土食用性生物、牧草和放射性核素指示体生物的监测 |
E.监测对象和监测项目可根据源释放规模、环境特点和监测目的选择 |
A.车辆配备满足在线控制要求,且具有行驶记录仪功能的卫星定位系统。 |
B.配置有效的通讯工具和必要的辐射防护用品和依法经定期检定合格的监测仪器。 |
C.使用专用车辆运输非放射性物品的,不得将放射性物品与非放射性物品混装。 |
D.运源车应设有固定源罐的装置。 |
A.γ射线 |
B.X 光 |
C.无线电波 |
D.微波 |
A.β- |
B.β+ |
C.EC(电子俘获) |
D.α |
A.α粒子 |
B.β 粒子 |
C.质子 |
D.γ光子 |
A.β射线的能量连续分布 |
B.有一个确定的最大能量值 |
C.分布曲线有一个极大值 |
D.能谱分立分布 |
A.发生严重程度和机率都随剂量变化而变化 |
B.即使剂量很小,也有可能发生效应 |
C.发生概率随受照剂量增加而增加,而严重程度与受照剂量无关 |
D.存在剂量阈值 |
A.胸腺 |
B.肠胃上皮细胞 |
C.胚胎组织 |
D.肾上皮细胞 |
A.外照射可以是单向照射或多向照射,后者的效应大于前者。 |
B.对于外照射的危害,n<γ、X>β>α。 |
C.对于内照射的危害,α<β、γ、X。 |
D.通常能量的α粒子不能穿过人体的表面的死层,故α粒子外照射一般不能对人体造成伤害。 |
A.电离辐射 |
B.非电离辐射 |
C.人工辐射 |
D.天然辐射 |
A.α粒子 |
B.β 粒子 |
C.质子 |
D.中子 |
A.α粒子 |
B.β 粒子 |
C.质子 |
D.γ光子 |
A.a |
B.b |
C.c |
D.d |
A.红色曲线所代表的物质的衰减因子较大。 |
B.绿色曲线所代表的物质的衰减因子较大。 |
C.红色曲线所代表的物质对γ射线的屏蔽作用较大。 |
D.绿色曲线所代表的物质对γ射线的屏蔽作用较大。 |
A.随着个体发育过程的推进,其对辐射的敏感性逐渐降低。 |
B.随着个体发育过程的推进,其对辐射的敏感性逐渐增高。 |
C.胚胎在不同的发育阶段,对辐射敏感性呈现不同程度的变化。 |
D.在怀孕的前 50 天辐射对胎儿的危害性最大。 |
A.发生严重程度和机率都随剂量变化而变化 |
B.即使剂量很小,也有可能发生效应 |
C.发生概率随受照剂量增加而增加,而严重程度与受照剂量无关 |
D.存在剂量阈值 |
A.电离辐射 |
B.非电离辐射 |
C.人工辐射 |
D.天然辐射 |
A.平板型电离室 |
B.球形电离室 |
C.正比计数器 |
D.G-M 计数管 |
A.电离室 |
B.平面硅(PIPS) |
C.液体闪烁器 |
D.碘化铯 |
A.氡气 |
B.核子秤 |
C.电视 |
D.安检 |
A.电离辐射 |
B.非电离辐射 |
C.人工辐射 |
D.天然辐射 |
A.电离辐射 |
B.非电离辐射 |
C.人工辐射 |
D.天然辐射 |
A.要求监测系统可靠性好,操作方便,响应时间快。 |
B.具有超阈值报警(声光报警)、与防护门联锁、测量数据存储等功能。 |
C.可选用具有一定通信距离的工业无线网络通信方式。 |
D.为了管理上的方便,可采用 GPRS 无线网络传输,实现远程联网。 |
A.消灭微生物 |
B.防止病虫危害 |
C.无损消毒 |
D.延长保质期 |
A.吸入 |
B.食入 |
C.皮肤渗入 |
D.伤口侵入 |
A.衰变过程遵循明确的统计规律 |
B.经历时间越长,放射性衰变原子核减少的越多。 |
C.每一种放射性核素衰变常数是固定不变的 |
D.每种放射性核素的半衰期是固定的 |
E.衰变常数乘以半衰期等于 0.693。 |
A.针对大剂量、大剂量率的急性照射 |
B.确定性效应有明确的阈值 |
C..在阈值以下不会见到有害效应 |
D.达到阈值则有害效应肯定会发生 |
E.效应的严重程度随所受剂量的增加而增加 |
A.时间防护 |
B.距离防护 |
C.屏蔽防护 |
D.个人防护 |
E.隔离防护 |
A.进口审批和备案 |
B.转让的审批与备案 |
C.转移的备案 |
D.送贮备案 |
E.返回出口国的审批 |
A.隔室操作 |
B.铅玻璃屏蔽 |
C.穿工作服 |
D.穿防护服 |
E.戴铅眼镜 |
A.A |
B.B |
C.C |
D.D |
A.A |
B.B |
C.C |
D.D |
A.紫外线 |
B.热辐射 |
C.可见光 |
D.无线电波 |
E.微波 |
A.α粒子 |
B.γ射线 |
C.β粒子 |
D.荧光 X 射线 |
A.宇宙射线 |
B.放射源 |
C.X 光 |
D.电焊弧 |
A.α射线 |
B.β射线 |
C.中子 |
D.γ射线 |
A.可见光 |
B.热源 |
C.电视天线 |
D.电脑 |
A.肾上皮细胞 |
B.肺上皮细胞 |
C.血管 |
D.眼晶体 |
A.天然辐射源主要来自宇宙射线、宇生和原生放射性核素。 |
B.宇宙射线来自太阳和星际空间。 |
C.宇宙射线与大气层中和地球表面氧、氮等多种元素的原子核相互作用后产生的放射性核素称作宇生放射性核素。 |
D.自地球形成以来,地壳内就存在放射性核素,称为原生放射性核素或陆生放射性核素。 |
A.电离辐射 |
B.非电离辐射 |
C.人工辐射 |
D.天然辐射 |